Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.15.480546

ABSTRACT

SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear. Here, using a novel geometric deep-learning model, we discovered that the antigenic profile of Omicron RBD is distinct from the prior VOCs, featuring reduced antigenicity in its remodeled receptor binding sites (RBS). To substantiate our deep-learning prediction, we immunized mice with different recombinant RBD variants and found that the Omicron's extensive mutations can lead to a drastically attenuated serologic response with limited neutralizing activity in vivo, while the T cell response remains potent. Analyses of serum cross-reactivity and competitive ELISA with epitope-specific nanobodies revealed that the antibody response to Omicron was reduced across RBD epitopes, including both the variable RBS and epitopes without any known VOC mutations. Moreover, computational modeling confirmed that the RBS is highly versatile with a capacity to further decrease antigenicity while retaining efficient receptor binding. Longitudinal analysis showed that this evolutionary trend of decrease in antigenicity was also found in hCoV229E, a common cold coronavirus that has been circulating in humans for decades. Thus, our study provided unprecedented insights into the reduced antibody titers associated with Omicron infection, revealed a possible trajectory of future viral evolution and may inform the vaccine development against future outbreaks.


Subject(s)
Neoplasms by Site
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.02.446831

ABSTRACT

Lymphopenia is common in severe COVID-19 disease, yet the mechanisms are poorly understood. In 148 patients with severe COVID-19, we found lymphopenia was associated with worse survival. CD4+ lymphopenia predominated, with lower CD4+/CD8+ ratios in severe COVID-19 compared to recovered, mild disease (p<0.0001). In severe disease, immunodominant CD4+ T cell responses to Spike-1(S1) produced increased in vitro TNF-, but impaired proliferation and increased susceptibility to activation-induced cell death (AICD). CD4+TNF-+ T cell responses inversely correlated with absolute CD4+ counts from severe COVID-19 patients (n=76; R=-0.744, P<0.0001). TNF- blockade including infliximab or anti-TNFRI antibodies strikingly rescued S1-specific CD4+ proliferation and abrogated S1-AICD in severe COVID-19 patients (P<0.001). Single-cell RNAseq demonstrated downregulation of Type-1 cytokines and NF{kappa}B signaling in S1-stimulated CD4+ cells with infliximab treatment. Lung CD4+ T cells in severe COVID-19 were reduced and produced higher TNF- versus PBMC. Together, our findings show COVID-19-associated CD4+ lymphopenia and dysfunction is autocrine TNF-/TNFRI-dependent and therapies targeting TNF- may be beneficial in severe COVID-19.


Subject(s)
Carcinoma, Renal Cell , COVID-19 , Lymphopenia
SELECTION OF CITATIONS
SEARCH DETAIL